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tISUMMARY

The problem of predicting, on the basis of an observed sample of

size n from an inverse Gaussian distribution, a future observation

from the same distribution is discussed. Two prediction intervals that have

been proposed in the literature, one of which is an approximate prediction

interval, are compared using Monte Carlo simulations. The results indicate

that in many of the simulated cases the approximate prediction interval is

superior with respect to larger estimated coverage probabilities and smaller

* -. estimated mean lengths. This is true in particular for n at least 15 and

for 95% and 99% prediction intervals.
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1. INTRODUCTION

The inverse Gaussian distribution has been proposed as a lifetime model,

and its properties have been studied by Chhikara & Folks [1], Chhikara &

Guttman [2], Padgett (5], and Padgett & Wei [7], among others. This model

applies to accelerated life testing and repair time situations where early

failures dominate, and it has a nonzero asymptotic failure rate [1].

Statistical prediction intervals have many applications in quality control

and in reliability problems, and such intervals have been derived for the

inverse Gaussian distribution by Padgett (6] and Chhikara & Guttman [2]

independently. Padgett (6] proposed an approximate prediction interval for

the mean of future observations from the inverse Gaussian distribution.

Monte Carlo simulation results indicated that his approximate prediction

interval performed very well with respect to coverage probabilities.

Chhikara & Guttman [2] obtained exact prediction intervals for a single future

observation from the inverse Gaussian from both a frequentist and a Bayesian

viewpoint. Their frequentist approach did not always provide two-sided

prediction intervals, however. In this note, Padgett's (61 approximate

interval will be compared with Chhikara & Guttman's [2] exact frequentist

approach based on Monte Carlo simulation results.

The pdf of the inverse Gaussian distribution appears in several forms [3].

The form used here is that given by Tweedie [91 with parameters p and X:

f(x;u,X) - (X/2jx 3 ) exp[-X(x-p)2/2p2x, x > 0 (, > 0,X > 0).

The mean of this distribution is ju, and X is a shape parameter. The

variance is #3/X, so p is not a simple location parameter. It will be

assumed in section 3 that both p and X are unknown.

%.. . .- . -... . .' . .. .. -. .. ... . ,2- ,+ .. 2 +.' -
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Notation List

MLE Maximum Likelihood Estimator

.up mean of inverse Gaussian distribution and its MLE

X,X shape parameter of inverse Gaussian distribution and its MLE

I(/,X) refers to inverse Gaussian distribution with parameters /,X

Y denotes probability level of prediction interval

-" n,m size of current, future random samples

XI , ...,Xn  current random sample from inverse Gaussian distribution

Y1,''" ,Ym future random sample from inverse Gaussian distribution;

independent of XI,...,X n
n

n. Xi/n, sample mean9 Xn il

X2 ,(v) y Cdf point of chi-square distribution with v degrees of

freedom

Fy(vl,v2 ) y Cdf point of F-distribution with (vl,v 2 ) degrees of

freedom

Other, standard notation is given in "Information for Readers & Authors" at

the rear of each issue.

2. THE PREDICTION INTERVALS

n
The MLEs of pand X are -n and - I (/Xi-1/ )/nn- i-n

[1,9]. Tweedie [9] showed that Xn and X are independent, Rn has

I(p,nX) distribution, and nVi has chi-square distribution with n-i

degrees of freedom. Since Ym has I(p,mX) distribution, by a result of

Shuster [8], mX(m-ju)2/pjm has chi-square distribution with one degree

of freedom. Thus, (n-l)mX(Ym-u) 2/(nu 2 m) has F-distribution with

(l,n-1) degrees of freedom. For a value 0 < y < 1, then
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r(Y-/) 2 nF (l,n-1)1
P 2 - -<  Y. (2.1)2% m(n-l)X

If j is known, (2.1) can be solved for an exact 100y% prediction

interval for Ym, the mean of m future observations from the inverse

Gaussian distribution. However, in the more practical case that # is

unknown, Padgett [6] proposed an approximation to (2.1) which was simple and

always produced a two-sided prediction interval for Ym given by the roots

of the quadratic equation

Y2 -c(X)Y, + - , (2.2)

2 -2c(X) a [(n+m) Xn F (l,n-l)/nm(n-l)X1] + 2 n

Denoting the smaller of the two roots by Ll(X) and the larger by Ul(X), an

approximate 100y% prediction interval for Ym is (LI(X),UI(X). For m-1,

this method gives an approximate 100y% prediction interval for a single

"future" observation, Y1 ' based on the "current" sample X1,...,Xn -

Chhikara & Guttman (2] obtained the exact 100y% prediction interval for

the single future observation Y1 as (L2 (X), U2(X)), where

4 L~2( - V+ 2  1 U2(X) [V1-V2

V * 1/X + nF (1,n-1)/(2(n-l)X),

V2 u (n+l)F (l,n-l)/((n-l)R X) + n F2 (l,n-l)/(4(n-1)2 2).y n y

Chhikara & Guttman point out that this procedure does not always provide two-

sided intervals since there is a positive probability that the difference

can be negative. In this case, only a lower one-sided interval is

admissible.
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Since the exact procedure of Chhikara & Guttman [2] might not yield a two-

sided interval for Y,, where Padgett's [6] approximation always gives one,

it is of interest to compare the two approaches. This is done by Monte Carlo

simulations in section 3.

3. COMPARISON OF THE PREDICTION INTERVALS

S. To compare Padgett's [6] approximate prediction interval for a single

future observation, Y, from the inverse Gaussian with the prediction interval

of Chhikara & Guttman (2], Monte Carlo simulations were performed to estimate

the coverage probabilities and average widths of the intervals. The procedure

for generating a random number from the inverse Gaussian distribution given by

Michael, Schucany & Haas (4] was used. The simulations were performed as

follows:

i. For given values of n, p and X, 1000 pairs of samples (Xi,...,Xn),Y

were generated.

ii. For each pair of samples, the 100y% prediction intervals for Y,

(Li(X), U(X)), i-1,2, were computed, and the lengths of the

intervals and the number of intervals containing Y were obtained.

iii. The average interval lengths from the 1000 pairs of samples were com-

puted and the proportions of intervals containing Y were obtained

as estimates of the mean interval lengths and coverage probabilities,

respectively.

iv. Steps i-iii were repeated for several values of n,p,X and for

. .90, .95, .99.

In the simulations, when X was small, a significant proportion (often

as high as 90% for X - .25) of the samples did not yield a two-sided interval

from Chhikara & Guttman's (2] procedure. In addition, the estimated coverage

probabilities for samples resulting in two-sided intervals were quite low for

Wa.

-' 'I " . . " " " " • "-,• . . .



6

small n. Tables 1-3 show some of the simulation results.

Surprisingly, as y increases, the approximate prediction interval pro-

.- posed by Padgett appears to be superior to the interval of Chhikara & Folks.

*.-" In all of the cases simulated, Padgett's interval had larger estimated coverage

probabilities and/or smaller estimated mean widths, and for larger n values

had smaller estimated mean widths. Also, the estimated coverage probabilities

for Padgett's interval were always close to y.

6)".

I@1 "
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Table 1

Simulation Results for Y - .99

Average Width Coverage
Probability

y n C&G Padgett C&G Padgett

1 0.25 5 30.225 208.308 0.806 0.983
1 0.25 30 583.178 38.365 0.991 0.989
3 0.25 5 36.460 3430.014 0.933 0.977
3 0.25 30 1895.497 368.060 0.957 0.990
1 1 15 103.805 12.354 0.988 0.993
1 4 5 47.602 9.157 0.986 0.988
1 4 15 4.568 4.084 0.993 0.994
1 4 30 3.714 3.531 0.990 0.991
5 1 15 550.348 332.821 0.947 0.990
5 4 5 403.608 220.023 0.945 0.989
5 4 30 96.125 62.778 0.987 0.992

Table 2

Simulation Results for y - .95

Average Width Coverage
Probability

- n C&G Padgett C&G Padgett

" - 1 0.25 5 25.999 73.393 0.828 0.942
1 0.25 30 849.066 21.850 0.945 0.962
3 0.25 5 28.096 1441.764 0.759 0.948
3 0.25 30 577.047 226.021 0.932 0.957
1 1 15 11.995 7.161 0.951 0.956
1 1 50 6.449 5.964 0.963 0.960
1 4 5 30.269 4.420 0.946 0.959

@ 1 4 30 2.391 2.387 0.937 0.944
5 1 15 782.390 198.000 0.940 0.973
5 1 30 776.896 138.490 0.948 0.948
5 4 5 200.971 100.599 0.905 0.956
5 4 30 45.309 37.529 0.961 0.942

-. -k
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Table 3

Simulation Results for y - .90

Average Width Coverage
Probability

X n C&G Padgett C&G Padgett

1 0.25 5 30.249 46.122 0.705 0.897
3 0.25 5 24.420 739.880 0.738 0.895
1 4 15 2.089 2.027 0.903 0.893
5 4 15 51.448 31.853 0.903 0.887
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